

PHARMACY PRACTICE NEWS

Special REPORT

Celebrating 30 Years of Diprivan®: How Propofol Transformed the Practice of Anesthesia

The content of this publication was developed by Fresenius Kabi, USA in consultation with Shaw Science Partners, Inc. Michael Coco, PhD, and Michael Shaw, MD, served as the medical writers.

iprivan® and other generic formulations of propofol injectable emulsion are the most commonly used parenteral anesthetics in the United States,1 with Diprivan accounting for roughly 70% of the US propofol market.² Propofol (2,6-diisopropylphenol) is the active ingredient for each formulation, but the formulations differ with respect to antimicrobial retardants and pH, which may be relevant for product stability.3 Propofol injectable emulsions are used clinically for induction of general anesthesia in patients 3 years of age and older and for maintenance of anesthesia in those at least 2 months of age, as well as for initiation and maintenance of monitored anesthesia care for patients undergoing procedures, combined sedation and regional anesthesia, and for intensive care unit (ICU) sedation of intubated, mechanically ventilated in adult patients.4

This Special Report commemorates the 30th anniversary in 2019 of Diprivan's introduction in the United States, taking a look back at its history and subsequent development and changes, and the transformative role it played in the practice of anesthesia. Max T. Baker, MD, associate professor, Department of Anesthesia at the University of lowa, in lowa City, and a noted expert in emulsion science, observed that many anesthesiologists were initially resistant to propofol. However, as anesthesiologists and their patients became more familiar with propofol, its popularity increased and eventually led to a number of important transformations in anesthesia practice.

Early History

The first agents used in the western hemisphere for general anesthesia in humans were the inhalational anesthetics nitrous oxide and diethyl ether in the mid-1840s, later to be largely replaced by inhaled halothane in the 1950s.⁵ Inhalational agents are no longer typically used to induce anesthesia in adults, although they are used for maintenance.⁵ Introduced in 1934, thiopentone (sodium thiopental) became the first clinically relevant IV anesthetic, producing rapid loss of consciousness without excitatory side effects.⁵ John B. Glen, BVMS, PhD, the original propofol researcher, noted that following its introduction by Lundy in Rochester, Minnesota, and by Waters in Madison, Wisconsin, in 1934, thiopentone remained the gold standard for induction of IV anesthesia based on its rapid onset and freedom from excitatory side effects (Glen JBI. Personal communication. June 2019). However, thiopentone had a serious drawback: Because it is metabolized relatively slowly, repeated injections or infusions to maintain anesthesia produced prolonged recovery times.^{1,5} Hence, thiopentone was typically only suitable as a single IV bolus for induction of anesthesia, not for uses or procedures in necessitating repeated injections.

The search thus began for an IV anesthetic that would provide rapid loss of consciousness together with rapid offset of clinical effect, and hence which might be used as either a single bolus injection or as repeated injections. The anesthesia-producing molecule would need to be lipophilic enough to gain rapid access into the brain and be rapidly removed from the brain.⁵

Supported by

Propofol, the active drug molecule, was discovered and preclinically tested in the 1970s in the pharmaceutical division of Imperial Chemical Industries, a large British chemical company. ^{5,6} Dr Glen, who directed the research, was later awarded the Lasker-DeBakey Clinical Medical Research Award in 2018 for his role in the discovery and development of propofol. ⁵ Compared with thiopentone, in animal studies, propofol was free from the "hangover" effect on motor coordination and mental acuity, and repeated injections did not significantly lengthen anesthesia recovery, while exhibiting similar rapid onset of anesthetic activity. ^{1,5}

The lipophilic molecule (propofol) would require an aqueous solution to facilitate IV injection and compatibility with blood. That search eventually led to the current Diprivan formulation, but not without encountering a number of formulation-related challenges. It soon became clear that the success of propofol

as an anesthetic depended on creating a suitable formulation. Propofol, which is an oil, was initially combined with Cremophor® EL, a surfactant used with other drugs, conferring aqueous solubility and hence deliverability via injection or infusion.⁵⁻⁷ The first clinical tri-

als of propofol in Cremophor EL were performed in Europe in 1977 and documented rapid anesthesia.^{6,7} However, the propofol–Cremophor EL formulation was subsequently associated with a high incidence of anaphylaxis, prompting withdrawal from further development in 1980.^{3,5,6}

The Challenge of Developing Emulsions

As an oil, propofol is insoluble in water. Propofol is dissolved in soybean oil. Purified egg yolk phospholipid, with its hydrophilic phosphate and lipophilic tail, serves as an emulsifier.^{3,8} The head of the phospholipid (lecithin) is negatively charged and forms the surface of the emulsion droplet, while the lipid tail is located in the center of the droplet.⁸ Propofol is contained in the center of each droplet surrounded by the phospholipid tail (Figure 1).³ However, emulsions are inherently fragile and must be produced under exacting manufacturing conditions. The integrity or stability of lipid emulsions can be affected by a wide variety of factors, including

Hydrophilic (negatively charged phosphate group)

Hydrophobic

Figure 1. Propofol emulsion droplet, illustrating the outer boundary consisting of egg yolk phospholipids and propofol within the interior.

Note that the negatively charged phosphate groups of the phospholipid line the surface of the droplet.

Based on reference 3.

heat, additives, and pH. The United States Pharmacopeial Convention (USP) recommendations for lipid emulsions specify a pH of 6.0 to 9.0 for optimum stability. 9,10,a This is because the droplets have a propensity to coalesce and form larger units at an acidic pH (Figure 2). 1,3,5,11,12 If the droplet size exceeds 5 µm they may form microemboli that can lodge in capillaries of the lungs or other organs and produce ischemia or other adverse clinical effects. 13,14

Subsequent Propofol Formulations

Building on improvements in emulsion technology in the early 1980s, a number of attempts were made to develop an alternative oil-in-water or lipid-based emulsion for propofol delivery. Eventually an emulsion consisting of propofol, soybean oil, egg yolk lecithin, glycerol, and sodium hydroxide was developed and evaluated in clinical trials in Europe (1982) and the

United States (1984).^{3,6} This formulation's anesthetic properties were found to be similar to propofol–Cremophor EL, but without the Cremophor EL–related anaphylactic reactions.^{3,15} Sodium hydroxide was included in the formulation to adjust the pH

—John B. Glen, BVMS, PhD

"We were looking for something that would mimic the

quality of anesthesia thiopentone produced, but that would

be metabolized more rapidly such that it could be used not

only for induction of anesthesia, but also administered by

continuous infusion for maintenance of anesthesia."

between 7.0 and 8.5—optimal for emulsion stability, as in Figure $2.^3$ Glycerol was used to maintain the formulation isotonic with blood.²

The propofol formulation was named Diprivan and launched in the United Kingdom and New Zealand in 1986 and in the United States in October 1989. ^{5,6} However, within a year of its US launch, a series of postoperative infections were reported in patients after receiving Diprivan. ^{7,16,17} It was later determined the infections were likely due to extrinsic contamination of Diprivan as a result of improper handling by clinical personnel. ^{16,17} The lipophilic nature of propofol formulations can support microbial growth at room temperature if exposed to extrinsic contamination.

Subsequently, the manufacturer (Zeneca Pharmaceuticals) studied a number of potential antimicrobial additives to better combat potential contamination due to mishandling before settling on ethylenediaminetetraacetic acid (EDTA, disodium edetate). 18,19 EDTA is an ion chelator that inhibits microbial growth by binding trace metals essential for their growth.²⁰ EDTA was selected based on its ability to suppress the growth of a large number of microorganisms examined under clinically relevant conditions, while maintaining the physical and chemical stability of the propofol emulsion at a pH of 6.0 to 9.0 and without requiring a lower pH to maintain the antimicrobial retardant activity or increasing toxicity concerns. 7,18,19 Other additives considered included sodium metabisulfite, benzyl alcohol, hydroxybenzoate, and phenylmercuric nitrate, among others.^{7,19} EDTA (0.005% wt/vol) was selected and consequently added to Diprivan to create the current formulation.²¹ The addition of EDTA did not change Diprivan's pharmacokinetics or pharmacodynamics. 7,22,b

- ^a The USP Lipid Emulsion monograph was the only relevant guidance available at the time Diprivan was developed. Subsequently, the USP Propofol Injectable Emulsion monograph was issued in March 2009, which revised the acceptable pH range of 4.5 to 8.5.
- ^b EDTA is a strong chelator of trace metals, including zinc. Although with Diprivan there are no reports of decreased zinc levels or zinc deficiency-related adverse events, Diprivan should not be infused for longer than 5 days without providing a drug holiday to safely replace estimated or measured urine zinc losses.

Propofol as a Transformational Drug in Anesthesia

Propofol is currently a widely used parenteral drug in the United States and worldwide, and is on the World Health Orga-

nization's Model List of 433 Essential Medicines.²³ Not only is propofol widely used, but in many ways it has transformed the practice of medicine. In a 2013 survey of US expert physicians and medical leaders within the specialty of anesthesiology, propofol was cited as a transformative drug, largely based on its impact on practice in the field.²⁴

"Emulsions consist of microdroplets of oil in aqueous dispersion. Such microdroplets have a tendency to coalesce and form larger droplets, and then you end up with the emulsion cracking. So, there needs to be an emulsifying agent, and this is where lecithin comes in and coats the globules with a negative charge that has the effect of preventing coalescence. pH is important for emulsion stabilization because as the pH falls and becomes more acidic, there is a tendency for aggregation of microdroplets."

-John B. Glen, BVMS, PhD

of action and short halflife of propofol made it an attractive option for procedural or ambulatory surgeries, and the emergence of Diprivan enabled a transition away from reliance on inhaled anesthetics to IV anesthesia, opening the door to development of TIVA.⁶ Development of the laryngeal mask airway also occurred contemporane-

ously with the emergence of Diprivan on the European and US markets, and helped propel both practices.⁶

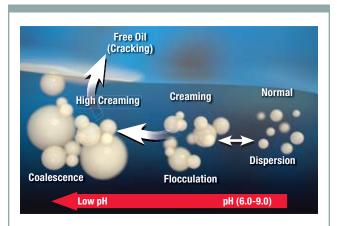
settings and for various procedures, including ICU sedation of intubated and mechanically ventilated adult patients. 4.6

duction of outpatient (ambulatory) anesthesia and increased

acceptance of total IV anesthesia (TIVA).6 The rapid onset

The properties of propofol seamlessly joined with the intro-

Interviews with experts involved in the early development of Diprivan further highlight how propofol emerged as a transformative drug.⁶ Robert Fragen, MD, an investigator in the early clinical trials, noted how patient experiences with Diprivan helped drive the drug's early popularity.⁶ Compared with existing drugs at the time, patients experienced more rapid recovery from sedation and fewer toxic side effects with Diprivan.⁶


Although its initial label was for induction and short-term anesthesia maintenance, it soon became clear the pharmaco-kinetic and pharmacodynamic properties of Diprivan might also enable its use for longer-term maintenance and as a sedative in patients with a regional anesthetic.⁶

Physicians became intrigued by the potential "diverse utility" of Diprivan and over time began to use propofol in varied

Fresenius Kabi and US Supplies: Maintaining Reliable Supply

Fresenius Kabi is the manufacturer and distributor of Diprivan in the United States, and supplies propofol to more than 150 other countries as well. Diprivan is produced in 2 state-of-the-art Fresenius Kabi production facilities in Graz, Austria and Uppsala, Sweden. Because Diprivan has the largest share of the US market, Fresenius Kabi is the US market leader for propofol.²

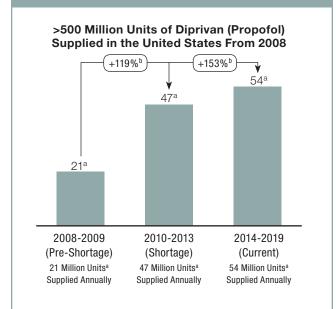

In early 2009, there were 3 US suppliers of propofol, but the US manufacturers of propofol decreased from 3 to 1 between

Figure 2. The negative charges on the surface of each propofol-containing droplet act as electrostatic repulsive barriers to cause dispersion among adjacent droplets in the oil-inwater emulsion.

As the pH of the solution is lowered, this repulsive force is reduced, enabling adjacent droplets to migrate and approach each other (creaming), increasing likelihood the droplets contact each other (flocculate) and merge to form larger conglomerates (coalescence). In other words, a progressive reduction in pH promotes destabilization of propofol injectable emulsions.

Based on reference 3.

Figure 3. Increased production of Diprivan during the 2009-2013 propofol shortages.

- ^a Based on the average annual units supplied during the time frame shown.
- ^b Based on the percentage increase over 2008-2009 average. Based on reference 2.

October 2009 and 2013.^{25,26} In response, Fresenius Kabi worked with government agencies, hired additional technicians and engineers, and used its multiple worldwide manufactur-

ing facilities to ramp up production of Diprivan to meet market needs during the propofol drug shortage (Figure 3). 2

Conclusion

As the manufacturer, Fresenius Kabi demonstrated its ability to step up the production during the 2009-2013 time period, as seen

in Figure 3. Diprivan continues to be the brand of propofol relied on by most anesthesiologists and health care professionals in the United States.²

Diprivan was the first propofol formulation to be approved worldwide, making its initial appearance onto the US market 30 years ago in 1989. Diprivan was manufactured as a lipid emulsion using the rapidly evolving science of lipid emulsions.

Propofol has been recognized as a transformative drug in anesthesia. 6,24

Following infections associated with contamination likely

due to mishandling of Diprivan,^{7,16,17} the original formulation was modified by adding EDTA to reduce infection risk.^{7,18,19} This addition was made after extensive study of EDTA and other potential antimicrobial additives. EDTA was selected based on its ability to inhibit the growth of a substantial number of microbes without increasing toxicity or requiring a

lowering of pH.ª Formulation of propofol at a pH below the USP recommended pH range for lipid emulsions (6.0-9.0)^{9,10,b} has been demonstrated to increase emulsion instability and droplet size.^{3,8,11,12} Over the years, Diprivan has been demonstrated to be a known, reliable, and trusted anesthetic in a wide variety of clinical settings, and is currently the most commonly used parenteral anesthetic in the United States.

^a EDTA is a strong chelator of trace metals, including zinc. Although with Diprivan there are no reports of decreased zinc levels or zinc deficiency-related adverse events, Diprivan should not be infused for longer than 5 days without providing a drug holiday to safely replace estimated or measured urine zinc losses.

"An extensive process ensued to find an

antimicrobial agent to add to the original

only one found satisfactory."

propofol formulation. A number of potential

retardants were evaluated, and EDTA was the

—John B. Glen, BVMS, PhD

^b The USP Lipid Emulsion monograph was the only relevant guidance available at the time Diprivan was developed. Subsequently, the USP Propofol Injectable Emulsion monograph was issued in March 2009, which revised the acceptable pH range of 4.5 to 8.5.

References

- Patel HH, Pearn ML, Patel PM, et al. General anesthetics and therapeutic gases. In: Brunton LL, Hilal-Dancan R, Knollmann BC, eds.
 Goodman & Gilman's: The Pharmaceutical Basis of Therapeutics.
 13th ed. New York: McGraw-Hill Education; 2017:387-404.
- 2. Data on file. IMS.
- 3. Baker MT, Naguib M. Anesthesiology. 2005;103(4):860-876.
- 4. Diprivan [package insert]. Lake Zurich, IL: Fresenius Kabi; 2017.
- 5. Glen JBI. JAMA. 2018;320(12):1235-1236.
- Bateman BT, Kesselheim AS. Drug Discov Today. 2015;20(8): 1012-1017.
- Thompson KA, Goodale DB. Intensive Care Med. 2000;26(suppl 4): S400-S404.
- 8. Driscoll DF, Dunbar JG, Marmarou A. Am J Health Syst Pharm. 2004;61(12):1276-1280.
- United States Pharmacopeial (USP) monographs. Lipid Injectable Emulsion (official from May 1, 2012). www.drugfuture.com/Pharmaco-poeia/usp35/PDF/3694-3695%20Lipid%20Injectable%20Emulsion. pdf. Accessed August 19, 2019.
- United States Pharmacopeia and National Formulary (USP 41-NF 36).
 Rockville, MD: United States Pharmacopeial Convention; 2018. online. uspnf.com/uspnf/document/GUID-9939A9B4-7588-4628-9652-623CEE9D75ED_3_en-US. Accessed August 19, 2019.
- 11. Han J, Davis SS, Washington C. Int J Pharm. 2001;215(1-2):207-220.
- 12. Han J, Washington C. Int J Pharm. 2005;288(2):263-271.

- 13. Driscoll DF. JPEN J Parenter Enteral Nutr. 2017;41(1):125-134.
- 14. Driscoll DF. Pharm Res. 2006;23(9):1959-1969.
- 15. Cummings GC, Dixon J, Kay NH, et al. *Anaesthesia*. 1984;39(12): 1168-1171
- Centers for Disease Control (CDC). MMWR Morb Mortal Wkly Rep. 1990;39(25):426-427, 433.
- Bennett SN, McNeil MM, Bland LA, et al. N Engl J Med. 1995;333(3): 147-154.
- 18. Bobey DG, Russell AD, Jones CB. Pharmacol Ther. 2000;25:589-603.
- 19. Jansson JR, Fukada T, Ozaki M, et al. *Anaesth Intensive Care.* 2006;34(3):362-368.
- Finnegan S, Percival SL. Adv Wound Care (New Rochelle). 2015;4(7): 415-421.
- 21. Craig DB. Can J Anaesth. 1998;45(9):913.
- 22. Schnider TW, Minto CF, Gambus PL, et al. *Anesthesiology.* 1998;88(5): 1170-1182.
- World Health Organization. WHO Model List of Essential Medicines, 20th list (March 2017, amended August 2017). www.who.int/medicines/publications/essentialmedicines/en/. Accessed August 19, 2019.
- 24. Kesselheim AS, Avorn J. Nat Rev Drug Discov. 2013;12(6):425-431.
- 25. Jensen V, Rappaport BA. N Engl J Med. 2010;363(9):806-807.
- 26. Weaver JM. Anesth Prog. 2010;57(3):89-90.

Disclaimer: This monograph is designed to be a summary of information. While it is detailed, it is not an exhaustive clinical review. McMahon Publishing, Fresenius Kabi, and the authors neither affirm nor deny the accuracy of the information contained herein. No liability will be assumed for the use of this monograph, and the absence of typographical errors is not guaranteed. Readers are strongly urged to consult any relevant primary literature.

Copyright © 2019, McMahon Publishing, 545 West 45th Street, New York, NY 10036. Printed in the USA. All rights reserved, including the right of reproduction, in whole or in part, in any form.

SR1923

10 mg per mL

FOR INTRAVENOUS ADMINISTRATION

Strict aseptic technique must always be maintained during handling. DIPRIVAN Strict aseptic technique must always be maintained during handling. DIPRIVAN is a single access parenteral product (single patient infusion vial) which contains 0.005% disodium edetate (EDTA) to inhibit the rate of growth of microorganisms, for up to 12 hours, in the event of accidental extrinsic contamination. However, DIPRIVAN can still support the growth of microorganisms, as it is not an antimicrobially preserved product under USP standards. Do not use if contamination is suspected. Discard unused drug product as directed within the required time limits. There have been reports in which failure to use aseptic technique when handling DIPRIVAN was associated with microbial contamination of the product and with fever, infection/sepsis, other life-threatening illness, and/ or death.

There have been reports, in the literature and other public sources, of the transmission of bloodborne pathogens (such as Hepatitis B, Hepatitis C, and HIV) from unsafe injection practices, and use of propofol vials intended for single use on multiple persons. DIPRIVAN vials are never to be accessed more than once or used on more than one person.

(See WARNINGS and DOSAGE AND ADMINISTRATION, Handling Procedures)

DESCRIPTION:

DIPRIVAN® (propofol) injectable emulsion, USP is a sterile, nonpyrogenic emulsion containing 10 mg/mL of propofol suitable for intravenous administration. Propofol is chemically described as 2,6-diisopropylphenol. The structural formula

Propofol is slightly soluble in water and, thus, is formulated in a white, oil-Proporto is siignity soluble in water and, rius, is formulated in a wnite, oil-in-water emulsion. The pKa is 11. The octanol/water partition coefficient for propofol is 6761:1 at a pH of 6 to 8.5. In addition to the active component, propofol, the formulation also contains soybean oil (100 mg/mL), glycerol (22.5 mg/mL), egg lecithin (12 mg/mL); and disodium edetate (0.005%); with sodium hydroxide to adjust pH. DIPRIVAN is isotonic and has a pH of 7 to 8.5.

CLINICAL PHARMACOLOGY:

General
DIPRIVAN is an intravenous general anesthetic and sedation drug for use in the induction and maintenance of anesthesia or sedation. Intravenous injection of a therapeutic dose of propofol induces anesthesia, with minimal excitation, usually within 40 seconds from the start of injection (the time for one arm-brain circulation). As with other rapidly acting intravenous anesthetic agents, the half-time of the blood-brain equilibration is approximately 1 minute to 3 minutes, accounting for the rate of induction of anesthesia. The mechanism of action, like all general anesthetics, is poorly understood. However, propofol is thought to produce its sedative/anesthetic effects by the positive modulation of the inhibitory function of the neurotransmitter GABA through the ligand-gated GABA,

Pharmacodynamics

Pharmacodynamics properties of propofol are dependent upon the therapeutic blood propofol concentrations. Steady-state propofol blood concentrations are generally proportional to infusion rates. Undesirable side effects, such as cardiorespiratory depression, are likely to occur at higher blood concentrations which result from bolus dosing or rapid increases in infusion rates. An adequate interval (3 minutes to 5 minutes) must be allowed between dose adjustments in carder to access clinical, effects. order to assess clinical effects.

The hemodynamic effects of DIPRIVAN during induction of anesthesia vary. If spontaneous ventilation is maintained, the major cardiovascular effect is arterial hypotension (sometimes greater than a 30% decrease) with little or no change in heart rate and no appreciable decrease in cardiac output. If ventilation is assisted or controlled (positive pressure ventilation), there is an increase in the incidence and the degree of depression of cardiac output. Addition of an opioid, used as a premedicant, further decreases cardiac output and respiratory drive.

If anesthesia is continued by infusion of DIPRIVAN, the stimulation of endotracheal intubation and surgery may return arterial pressure towards normal. However, cardiac output may remain depressed. Comparative clinical studies have shown that the hemodynamic effects of DIPRIVAN during induction of anesthesia are generally more pronounced than with other intravenous (IV) induction agents.

Induction of anesthesia with DIPRIVAN is frequently associated with appropriate the control of t in both adults and pediatric patients. In adult patients who received DIPRIVAN (2 mg/kg to 2.5 mg/kg), apnea lasted less than 30 seconds in 7% of patients, 30 seconds to 60 seconds in 24% of patients, and more than 60 seconds in 12% of patients. In pediatric patients from birth through 16 years of age assessable for apnea who received bolus doses of DIPRIVAN (1 mg/kg to 3.6 mg/kg), apnea lasted less than 30 seconds in 12% of patients, 30 seconds to 60 seconds in 10% of patients, and preceived bolus doses of DIPRIVAN (1 mg/kg to 3.6 mg/kg), apnea lasted less than 30 seconds in 12% of patients, 30 seconds to 60 seconds in 10% of patients, 30 seconds to 60 seconds in 10% of patients and preceived by 10 seconds in 10% of patients and patients and preceived by 10 seconds in 10% of patients and pati of patients, and more than 60 seconds in 5% of patients.

During maintenance of general anesthesia, DIPRIVAN causes a decrease in spontaneous minute ventilation usually associated with an increase in carbon dioxide tension which may be marked depending upon the rate of administration and concurrent use of other medications (e.g., opioids, sedatives, etc.).

During monitored anesthesia care (MAC) sedation, attention must be given to the cardiorespiratory effects of DIPRIVAN. Hypotension, oxyhemoglobin desaturation, apnea, and airway obstruction can occur, especially following a rapid bolus of DIPRIVAN. During initiation of MAC sedation, slow infusion or slow injection techniques are preferable over rapid bolus administration.

During maintenance of MAC sedation, a variable rate infusion is preferable over intermittent bolus administration in order to minimize undesirable cardiorespiratory effects. In the elderly, debilitated, or American Society of Anesthesiologists Physical Status (ASA-PS) III or IV patients, rapid (single or repeated) bolus dose administration should not be used for MAC sedation (see WARNINGS).

Clinical and preclinical studies suggest that DIPRIVAN is rarely associated with elevation of plasma histamine levels

Preliminary findings in patients with normal intraocular pressure indicate that DIPRIVAN produces a decrease in intraocular pressure which may be associated with a concomitant decrease in systemic vascular resistance.

Clinical studies indicate that DIPRIVAN when used in combination with hypocarbia increases cerebrovascular resistance and decreases cerebral blood flow, cerebral metabolic oxygen consumption, and intracranial pressure.

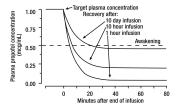
DIPRIVAN does not affect cerebrovascular reactivity to changes in arterial carbon dioxide tension (see Clinical Trials, Neuroanesthesia)

Clinical studies indicate that DIPRIVAN does not suppress the adrenal response to ACTH.

Animal studies and limited experience in susceptible patients have not indicated any propensity of DIPRIVAN to induce malignant hyperthermia.

Hemosiderin deposits have been observed in the livers of dogs receiving DIPRIVAN containing 0.005% disodium edetate over a four-week period; the clinical significance of this is unknown.

Pharmacokinetics


The pharmacokinetics of propofol are well described by a three compartment linear model with compartments representing the plasma, rapidly equilibrating tissues, and slowly equilibrating tissues.

Following an IV bolus dose, there is rapid equilibration between the plasma and the brain, accounting for the rapid onset of anesthesia. Plasma levels initially decline rapidly as a result of both distribution and metabolic clearance. Distribution accounts for about half of this decline following a bolus of propofol. However, distribution is not constant over time, but decreases as body tissues equilibrate with plasma and become saturated. The rate at which equilibration occurs is a function of the rate and duration of the infusion. When equilibration occurs there is no longer a net transfer of propofol between tissues and plasma.

Discontinuation of the recommended doses of DIPRIVAN after the maintenance of anesthesia for approximately one hour, or for sedation in the ICU for one day, results in a prompt decrease in blood propofol concentrations and rapid awakening. Longer influsions (10 days of ICU sedation) result in accumulation of significant tissue stores of propofol, such that the reduction in circulating propofol is slowed and the time to awakening is increased

By daily titration of DIPRIVAN dosage to achieve only the minimum effective therapeutic concentration, rapid awakening within 10 minutes to 15 minutes can occur even after long-term administration. If, however, higher than necessary infusion levels have been maintained for a long time, propofol redistribution from fat and muscle to the plasma can be significant and slow recovery.

The figure below illustrates the fall of plasma propofol levels following infusions of various durations to provide ICU sedation.

The large contribution of distribution (about 50%) to the fall of propofol plasma levels following brief infusions means that after very long infusions a reduction in the infusion rate is appropriate by as much as half the initial infusion rate in order to maintain a constant plasma level. Therefore, failure to reduce the infusion rate in patients receiving DIPRIVAN for extended periods may result in excessively high blood concentrations of the drug. Thus, titration to clinical response and daily evaluation of sedation levels are important during use of NURDIVAN intrinsic for CUL evolutions. DIPRIVAN infusion for ICU sedation

Adults

Propofol clearance ranges from 23 mL/kg/min to 50 mL/kg/min (1.6 L/min to 3.4 L/min in 70 kg adults). It is chiefly eliminated by hepatic conjugation to inactive Limin in 70 kg adults). It is critically eliminated by freplatic conjugation to inactive metabolities which are excreted by the kidney. A glucuronide conjugate accounts for about 50% of the administered dose. Propofol has a steady-state volume of distribution (10-day infusion) approaching 60 L/kg in healthy adults. A difference in pharmacokinetics due to sex has not been observed. The terminal half-life of propofol after a 10-day infusion is 1 day to 3 days.

With increasing patient age, the dose of propofol needed to achieve a defined anesthetic end point (dose-requirement) decreases. This does not appear to be an age-related change in pharmacodynamics or brain sensitivity, as measured by EEG burst suppression. With increasing patient age, pharmacokinetic changes are such that, for a given IV bolus dose, higher peak plasma concentrations occur, which can explain the decreased dose requirement. These higher peak plasma concentrations in the elderly can predispose patients to cardiorespiratory effects including hypotension, apnea, airway obstruction, and/or arterial oxygen desaturation. The higher plasma levels reflect an age-related decrease in volume of distribution and intercompartmental clearance. Lower doses are therefore recommended for initiation and maintenance of sedation and anesthesia in elderly patients (see DOSAGE AND ADMINISTRATION).

The pharmacokinetics of propofol were studied in children between 3 years and 12 years of age who received DIPRIVAN for periods of approximately 1 hour to 2 hours. The observed distribution and clearance of propofol in these children were similar to adults

The pharmacokinetics of propofol do not appear to be different in people with chronic hepatic cirrhosis or chronic renal impairment compared to adults with normal hepatic and renal function. The effects of acute hepatic or renal failure on the pharmacokinetics of propofol have not been studied.

Clinical Trials

Anesthesia and Monitored Anesthesia Care (MAC) Sedation Pediatric Anesthesia

DIPRIVAN was studied in clinical trials which included cardiac surgical patients. Most patients were 3 years of age or older. The majority of the patients were healthy ASA-PS I or II patients. The range of doses in these studies are described in Tables 1 and 2.

TABLE 1. PEDIATRIC INDUCTION OF ANESTHESIA

Age Range	Induction Dose Median (range)	Injection Duration Median (range)
Birth through 16 years	2.5 mg/kg (1 mg/kg to 3.6 mg/kg)	20 sec. (6 sec to 45 sec)

TABLE 2. PEDIATRIC MAINTENANCE OF ANESTHESIA

Age Range	Maintenance Dosage	Duration
2 months to 2 years	199 mcg/kg/min (82 mcg/kg/min to 394 mcg/kg/min)	65 minutes (12 minutes to 282 minutes)
2 to 12 years	188 mcg/kg/min (12 mcg/kg/min to 1,041 mcg/kg/min)	69 minutes (23 minutes to 374 minutes)
>12 through 16 years	161 mcg/kg/min (84 mcg/kg/min to 359 mcg/kg/ min)	69 minutes (26 minutes to 251 minutes)

Neuroanestresia
DIPRIVAN was studied in patients undergoing craniotomy for supratentorial tumors in two clinical trials. The mean lesion size (anterior/posterior x lateral) was 31 mm x 32 mm in one trial and 55 mm x 42 mm in the other trial respectively. Anesthesia was induced with a median DIPRIVAN dose of 1.4 mg/kg (range: 0.9 mg/kg) to 6.9 mg/kg) and maintained with a median maintenance DIPRIVAN dose of 146 mcg/kg/min (range: 68 mcg/kg/min to 425 mcg/kg/min). The median duration of the DIPRIVAN maintenance infusion was 285 minutes (range: 48 minutes to 622 minutes).

DIPRIVAN was administered by infusion in a controlled clinical trial to evaluate its effect on cerebrospinal fluid pressure (CSFP). The mean arterial pressure was maintained relatively constant over 25 minutes with a change from baseline of -4% \pm 17% (mean \pm SD). The change in CSFP was -46% \pm 14%. As CSFP is an indirect measure of intracranial pressure (ICP), DIPRIVAN, when given by infusion or slow bolus in combination with hypocarbia, is capable of decreasing ICP independent of changes in arterial pressure.

Intensive Care Unit (ICU) Sedation

Adult Patients

DIPRIVAN was compared to benzodiazepines and opioids in clinical trials involving ICU patients. Of these, 302 received DIPRIVAN and comprise the overall safety database for ICU sedation.

Across all clinical studies, the mean infusion maintenance rate for all DIPRIVAN patients was 27 \pm 21 mcg/kg/min. The maintenance infusion rates required to maintain adequate sedation ranged from 2.8 mcg/kg/min to 130 mcg/kg/min. The infusion rate was lower in patients over 55 years of age (approximately 20 mcg/kg/min) compared to patients under 55 years of age (approximately 38 mcg/kg/min). Although there are reports of reduced analgesic requirements, most patients received opioids for analgesia during maintenance of ICU sedation. In these studies, morphine or fentanyl was used as needed for analgesia. Some patients also received benzodiazepines and/or neuromuscular blocking agents. During long-term maintenance of sedation, some ICU patients were awakened once or twice every 24 hours for assessment of neurologic or respiratory function.

In Medical and Postsurgical ICU studies comparing DIPRIVAN to benzodiazepine infusion or bolus, there were no apparent differences in maintenance of adequate sedation, mean arterial pressure, or laboratory findings. Like the comparators, DIPRIVAN reduced blood cortisol during sedation while maintaining responsivity to challenges with adrenocorticotropic hormone (ACTH). Case reports from the published literature generally reflect that DIPRIVAN has been used safely in patients with a history of porphyria or mailinant hyperthermia malignant hyperthermia.

In hemodynamically stable head trauma patients ranging in age from 19 years to 43 years, adequate sedation was maintained with DIPRIVAN or morphine. There were no apparent differences in adequacy of sedation, intracranial pressure, cerebral perfusion pressure, or neurologic recovery between the treatment groups. In literature reports of severely head-injured patients in Neurosurgical ICUs, DIPRIVAN infusion and hyperventilation, both with and without divides certain procurse, while maintaining with and without diuretics, controlled intracranial pressure while maintaining cerebral perfusion pressure. In some patients, bolus doses resulted in decreased blood pressure and compromised cerebral perfusion pressure.

DIPRIVAN was found to be effective in status epilepticus which was refractory to the standard anticonvulsant therapies. For these patients, as well as for ARDS/respiratory failure and tetanus patients, sedation maintenance dosages were generally higher than those for other critically ill patient populations.

Pediatric Patients
A single, randomized, controlled, clinical trial that evaluated the safety and effectiveness of DIPRIVAN versus standard sedative agents (SSA) was conducted on 327 pediatric ICU patients. Patients were randomized to receive either DIPRIVAN 2%, (113 patients), DIPRIVAN 1%, (109 patients), or an SSA (e.g., lorazepam, chloral hydrate, fentanyl, ketamine, morphine, or phenobarbital). DIPRIVAN therapy was initiated at an infusion rate of 5.5 mg/kg/hr and titrated as needed to maintain sedation at a standardized level. The results of the study

showed an increase in the number of deaths in patients treated with DIPRIVAN as compared to SSAs. Of the 25 patients who died during the trial or within the 28-day follow-up period: 12 (11% were) in the DIPRIVAN 2% treatment group, 9 (8% were) in the DIPRIVAN 1% treatment group, and 4% were (4%) in the SSA treatment group. The differences in mortality rate between the groups were not statistically significant. Review of the deaths failed to reveal a correlation with underlying disease status or a correlation to the drug or a definitive pattern to the causes of death.

Cardiac Anesthesia

DIPRIVAN was evaluated in clinical trials involving patients undergoing coronary artery bypass graft (CABG).

In post-CABG (coronary artery bypass graft) patients, the maintenance rate of propofol administration was usually low (median 11 mcg/kg/min) due to the intraoperative administration of high opioid doses. Patients receiving DIPRIVAN required 35% less nitroprusside than midazolam patients. During initiation of sedation in post-CABG patients, a 15% to 20% decrease in blood pressure was seen in the first 60 minutes. It was not possible to determine cardiovascular effects in patients with severely compromised ventricular function.

INDICATIONS AND USAGE:

DIPRIVAN is an IV general anesthetic and sedation drug that can be used as described in the table below.

Table 3. Indications for DIPRIVAN

Indication	Approved Patient Population
Initiation and maintenance of Monitored Anesthesia Care (MAC) sedation	Adults only
Combined sedation and regional anesthesia	Adults only (see PRECAUTIONS)
Induction of General Anesthesia	Patients greater than or equal to 3 years of age
Maintenance of General Anesthesia	Patients greater than or equal to 2 months of age
Intensive Care Unit (ICU) sedation of intubated, mechanically ventilated patients	Adults only

Safety, effectiveness and dosing guidelines for DIPRIVAN have not been established for MAC Sedation in the pediatric population; therefore, it is not recommended for this use (see **PRECAUTIONS**, *Pediatric Use*).

DIPRIVAN is not recommended for induction of anesthesia below the age of 3 years or for maintenance of anesthesia below the age of 2 months because its safety and effectiveness have not been established in those populations.

In the Intensive Care Unit (ICU), DIPRIVAN can be administered to intubated, mechanically ventilated adult patients to provide continuous sedation and control of stress responses only by persons skilled in the medical management of critically ill patients and trained in cardiovascular resuscitation

DIPRIVAN is not indicated for use in Pediatric ICU sedation since the safety of this regimen has not been established (see PRECAUTIONS, Pediatric Use)

DIPRIVAN is not recommended for obstetrics, including Cesarean section deliveries. DIPRIVAN crosses the placenta, and as with other general anesthetic agents, the administration of DIPRIVAN may be associated with neonatal depression (see PRECAUTIONS).

DIPRIVAN is not recommended for use in nursing mothers because propofol has been reported to be excreted in human milk, and the effects of oral absorption of small amounts of propofol are not known (see **PRECAUTIONS**).

CONTRAINDICATIONS:

DIPRIVAN is contraindicated in patients with a known hypersensitivity to propofol or any of DIPRIVAN components.

DIPRIVAN is contraindicated in patients with allergies to eggs, egg products, soybeans or soy products.

Use of DIPRIVAN has been associated with both fatal and life-threatening anaphylactic and anaphylactoid reactions.

For general anesthesia or monitored anesthesia care (MAC) sedation, DIPRIVAN should be administered only by persons trained in the administration of general anesthesia and not involved in the conduct of the surgical/diagnostic procedure. Sedated patients should be continuously monitored, and facilities for maintenance of a patent airway, providing artificial ventilation, administering supplemental oxygen, and instituting cardiovascular resuscitation must be immediately available. Patients should be continuously monitored for early signs of hypotension, apnea, airway obstruction, and/or oxygen desaturation. These cardiorespiratory effects are more likely to occur following rapid bolus administration, especially in the elderly, debilitated, or ASA-PS III or IV patients.

For sedation of intubated, mechanically ventilated patients in the Intensive Care Unit (ICU), DIPRIVAN should be administered only by persons skilled in the management of critically ill patients and trained in cardiovascular resuscitation

Use of DIPRIVAN infusions for both adult and pediatric ICU sedation has been associated with a constellation of metabolic derangements and organ system failures, referred to as Propofol Infusion Syndrome, that have resulted in death. failures, referred to as Propofol Infusion Syndrome, that have resulted in death. The syndrome is characterized by severe metabolic acidosis, hyperkalemia, lipemia, rhabdomyolysis, hepatomegaly, renal failure, ECG changes* and/or cardiac failure. The following appear to be major risk factors for the development of these events: decreased oxygen delivery to tissues; serious neurological injury and/or sepsis; high dosages of one or more of the following pharmacological agents: vasoconstrictors, steroids, inotropes and/or prolonged, high-dose infusions of propofol (greater than 5 mg/kg/h for greater than 48h). The syndrome has also hear renorted following large-dose short-term infusions during surgical has also been reported following large-dose, short-term infusions during surgical anesthesia. In the setting of prolonged need for sedation, increasing propofol dose requirements to maintain a constant level of sedation, or onset of metabolic acidosis during administration of a propofol infusion, consideration should be given to using alternative means of sedation.

*Coved ST segment elevation (similar to ECG changes of the Brugada

Abrunt discontinuation of DIPRIVAN prior to weaning or for daily evaluation of sedation levels should be avoided. This may result in rapid awakening with associated anxiety, agitation, and resistance to mechanical ventilation. Infusions of DIPRIVAN should be adjusted to maintain a light level of sedation through the weaning process or evaluation of sedation level (see PRECAUTIONS).

DIPRIVAN should not be coadministered through the same IV catheter with blood or plasma because compatibility has not been established. In vitro tests have shown that aggregates of the globular component of the emulsion vehicle have occurred with blood/plasma/serum from humans and animals. The clinical significance of these findings is not known.

There have been reports in which failure to use aseptic technique when handling DIPRIVAN was associated with microbial contamination of the product and with fever, infection, sepsis, other life-threatening illness, and death. Do not use if contamination is suspected. Discard unused drup product as directed within the required time limits (see DOSAGE AND ADMINISTRATION, Handling

There have been reports, in the literature and other public sources, of the transmission of bloodborne pathogens (such as Hepatitis B, Hepatitis C, and HIV) from unsafe injection practices, and use of propofol vials intended for single use on multiple persons. DIPRIVAN vial is never to be accessed more than once or used on more than one person.

Pediatric Neurotoxicity

Published animal studies demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity increase neuronal apoptosis in the developing brain and result in long-term cognitive deficits when used for longer than 3 hours. The clinical significance of these findings is not clear. However, based on the available data, the window of vulnerability to these changes is believed to correlate with exposures in the third trimester of gestation through the first several months of life, but may extend out to approximately three years of age in humans (see PRECAUTIONS, Pregnancy, Pediatric Use; ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY).

Some published studies in children suggest that similar deficits may occur after repeated or prolonged exposures to anesthetic agents early in life and may result in adverse cognitive or behavioral effects. These studies have substantial limitations, and it is not clear if the observed effects are due to the anesthetic/sedation drug administration or other factors such as the surgery or underlying

Anesthetic and sedation drugs are a necessary part of the care of children needing surgery, other procedures, or tests that cannot be delayed, and no specific medications have been shown to be safer than any other. Decisions regarding the timing of any elective procedures requiring anesthesia should take into consideration the benefits of the procedure weighed against the potential

PRECAUTIONS:

Adult and Pediatric Patients

Allower induction dose and a slower maintenance rate of administration should be used in elderly, debilitated, or ASA-PS III or IV patients (see **DOSAGE AND ADMINISTRATION**). Patients should be continuously monitored for early signs of hypotension and/or bradycardia. Apnea requiring ventilatory support often occurs during induction and may persist for more than 60 seconds. DIPRIVAN use requires caution when administered to patients with disorders of lipid metabolism such as primary hyperlipoproteinemia, diabetic hyperlipemia, and

Very rarely the use of DIPRIVAN may be associated with the development of a period of postoperative unconsciousness which may be accompanied by an increase in muscle tone. This may or may not be preceded by a brief period of wakefulness. Recovery is spontaneous.

When DIPRIVAN is administered to an epileptic patient, there is a risk of seizure during the recovery phase

Attention should be paid to minimize pain on administration of DIPRIVAN. Transient local pain can be minimized if the larger veins of the forearm or antecubital fossa are used. Pain during intravenous injection may also be reduced by prior injection of IV lidocaine (1 mL of a 1% solution). Pain on injection occurred frequently in pediatric patients (45%) when a small vein of the hand was utilized without lidocaine pretreatment with lidocaine pretreatment or when antecubital veins were utilized, pain was minimal (incidence less than 10%) and well-tolerated. There have been reports in the literature indicating that the addition of lidecains of DIPRIVAN. 10%) and well-olerated. There have been reports in the literature indicating that the addition of lidocaine to DIPRIVAN in quantities greater than 20 mg lidocaine/ 200 mg DIPRIVAN results in instability of the emulsion which is associated with increases in globule sizes over time and (in rat studies) a reduction in anesthetic potency. Therefore, it is recommended that lidocaine be administered prior to DIPRIVAN administration or that it be added to DIPRIVAN immediately before administration and in quantities not exceeding 20 mg lidocaine/200 mg DIPRIVAN.

Venous sequelae, i.e., phlebitis or thrombosis, have been reported rarely (less than 1%). In two clinical studies using dedicated intravenous catheters, no instances of venous sequelae were observed up to 14 days following induction.

Intra-arterial injection in animals did not induce local tissue effects Accidental intra-arterial injection has been reported in patients, and, other than pain, there were no major sequelae

Intentional injection into subcutaneous or perivascular tissues of animals caused minimal tissue reaction. During the post-marketing period, there have been rare reports of local pain, swelling, blisters, and/or tissue necrosis following accidental extravasation of DIPRIVAN.

Perioperative myoclonia, rarely including convulsions and opisthotonos, has occurred in association with DIPRIVAN administration.

Clinical features of anaphylaxis, including angioedema, bronchospasm, erythema, and hypotension, occur rarely following DIPRIVAN administration.

There have been rare reports of pulmonary edema in temporal relationship to the administration of DIPRIVAN, although a causal relationship is unknow

Rarely, cases of unexplained postoperative pancreatitis (requiring hospital

admission) have been reported after anesthesia in which DIPRIVAN was one of the induction agents used. Due to a variety of confounding factors in cases, including concomitant medications, a causal relationship to DIPRIVAN

DIPRIVAN has no vagolytic activity. Reports of bradycardia, asystole, and rarely, cardiac arrest have been associated with DIPRIVAN. Pediatric patients are susceptible to this effect, particularly when fentanyl is given concomitantly. The intravenous administration of anticholinergic agents (e.g., atropine or glycopyrrolate) should be considered to modify potential increases in vagal tone due to concomitant agents (e.g., succinylcholine) or surgical stimuli.

Intensive Care Unit Sedation Adult Patients

WARNINGS and DOSAGE AND ADMINISTRATION, Handling dures.) The administration of DIPRIVAN should be initiated as a Procedures.) continuous infusion and changes in the rate of administration made slowly (greater than 5 min) in order to minimize hypotension and avoid acute overdosage (see DOSAGE AND ADMINISTRATION)

Patients should be monitored for early signs of significant hypotension Patients snould be monitored for early signs of significant hypotension and/or cardiovascular depression, which may be profound. These effects are responsive to discontinuation of DIPRIVAN, IV fluid administration, and/or vasopressor therapy. In the elderly, debilitated, or ASA-PS III or IV patients, rapid (single or repeated) bolus administration should not be used during sedation in order to minimize undesirable cardiorespiratory depression, including hypotension, apnea, airway obstruction, and oxygen desaturation.

As with other sedative medications, there is wide interpatient variability in DIPRIVAN dosage requirements, and these requirements may change with time

Failure to reduce the infusion rate in patients receiving DIPRIVAN for extended periods may result in excessively high blood concentrations of the drug. Thus, titration to clinical response and daily evaluation of sedation levels are important during use of DIPRIVAN infusion for ICU sedation, especially when it is used for long durations.

Opioids and paralytic agents should be discontinued and respiratory function optimized prior to weaning patients from mechanical ventilation. Infusions of DIPRIVAN should be adjusted to maintain a light level of sedation prior to weaning patients from mechanical ventilatory support. Throughout the weaning process, this level of sedation may be maintained in the absence of respiratory depression. Because of the rapid clearance of DIPRIVAN, abrupt discontinuation of a patient's infusion may result in rapid awakening with associated anxiety, agitation, and resistance to mechanical ventilation, making weaning from mechanical ventilation difficult. It is therefore recommended that administration of DIPRIVAN be continued in order to maintain a light level of sedation throughout optimized prior to weaning patients from mechanical ventilation. Infusions of DIPRIVAN be continued in order to maintain a light level of sedation throughout the weaning process until 10 minutes to 15 minutes prior to extubation, at which time the infusion can be discontinued.

Since DIPRIVAN is formulated in an oil-in-water emulsion, elevations in serum triglycerides may occur when DIPRIVAN is administered for extended periods of time. Patients at risk of hyperlipidemia should be monitored for increases in serum triglycerides or serum turbidity. Administration of DIPRIVAN should be adjusted if fat is being inadequately cleared from the body. A reduction in the quantity of concurrently administered lipids is indicated to compensate for the amount of lipid infused as part of the DIPRIVAN formulation; 1 mL of DIPRIVAN contains approximately 0.1 g of fat (1.1 kcal).

EDTA is a strong chelator of trace metals – including zinc. Although with DIPRIVAN there are no reports of decreased zinc levels or zinc deficiency-related adverse events, DIPRIVAN should not be infused for longer than 5 days without providing a drug holiday to safely replace estimated or measured urine zinc losses.

In clinical trials mean urinary zinc loss was approximately 2.5 mg/day to 3 mg/day in adult patients and 1.5 mg/day to 2 mg/day in pediatric patients.

In patients who are predisposed to zinc deficiency, such as those with burns, diarrhea, and/or major sepsis, the need for supplemental zinc should be considered during prolonged therapy with DIPRIVAN.

At high doses (2 grams to 3 grams per day), EDTA has been reported, on rare occasions, to be toxic to the renal tubules. Studies to date in patients with normal or impaired renal function have not shown any alteration in renal function with DIPRIVAN containing 0.005% dissodium edetate. In patients at risk for renal impairment, urinalysis and urine sediment should be checked before initiation of sedation and then be monitored on alternate days during sedation

The long-term administration of DIPRIVAN to patients with renal failure and/ or hepatic insufficiency has not been evaluated.

Neurosurgical Anesthesia

When DIPRIVAN is used in patients with increased intracranial pressure or impaired cerebral circulation, significant decreases in mean arterial pressure should be avoided because of the resultant decreases in cerebral perfusion pressure. To avoid significant hypotension and decreases in cerebral perfusion pressure, an infusion or slow bolus of approximately 20 mg every 10 seconds should be utilized instead of rapid, more frequent, and/or larger boluses of DIPRIVAN. Slower induction, titrated to clinical responses, will generally result in reduced induction dosage requirements (1 mg/kg to 2 mg/kg). When increased ICP is suspected, hyperventilation and hypocarbia should accompany the administration of DIPRIVAN (see **DOSAGE AND ADMINISTRATION**).

Slower rates of administration should be utilized in premedicated patients, geriatric patients, patients with recent fluid shifts, and patients who are hemodynamically unstable. Fluid deficits should be corrected prior to administration of DIPRIVAN. In those patients where additional fluid therapy may be contraindicated, other measures, e.g., elevation of lower extremities, or use of pressor agents, may be useful to offset the hypotension which is associated with the induction of anesthesia with DIPRIVAN.

Information for Patients

Risk of Drowsiness

Patients should be advised that performance of activities requiring mental alertness, such as operating a motor vehicle, or hazardous machinery or signing legal documents may be impaired for some time after general anesthesia or

Effect of Anesthetic and Sedation Drugs on Early Brain Development

Studies conducted in young animals and children suggest repeated or prolonged use of general anesthetic or sedation drugs in children younger than 3 years may have negative effects on their developing brains. Discuss with parents and caregivers the benefits, risks, and timing and duration of surgery or procedures requiring anesthetic and sedation drugs (see WARNINGS, Pediatric Neurotoxicity)

Drug Interactions

The induction dose requirements of DIPRIVAN may be reduced in patients with intramuscular or intravenous premedication, particularly with narcotics (e.g., morphine, meperidine, and fentanyl, etc.) and combinations of opioids and sedatives (e.g., benzodiazepines, barbiturates, chloral hydrate, droperidol, etc.). These agents may increase the anesthetic or sedative effects of DIPRIVAN and may also result in more pronounced decreases in systolic, diastolic, and mean arterial pressures and cardiac output.

During maintenance of anesthesia or sedation, the rate of DIPRIVAN uning maintenance of anestriesia or secation, the rate of DIFHIVAN administration should be adjusted according to the desired level of anesthesia or sedation and may be reduced in the presence of supplemental analgesic agents (e.g., nitrous oxide or opioids). The concurrent administration of potent inhalational agents (e.g., isoflurane, enflurane, and halothane) during maintenance with DIPRIVAN has not been extensively evaluated. These inhalational agents can also be expected to increase the anesthetic or sedative and cardiorespiratory effects of DIPRIVAN

The concomitant use of valproate and propofol may lead to increased blood levels of propofol. Reduce the dose of propofol when co-administering with valproate. Monitor patients closely for signs of increased sedation or cardiorespiratory depression.

DIPRIVAN does not cause a clinically significant change in onset, intensity or duration of action of the commonly used neuromuscular blocking agents (e.g., succinylcholine and nondepolarizing muscle relaxants).

No significant adverse interactions with commonly used premedications or drugs used during anesthesia or sedation (including a range of muscle relaxants, inhalational agents, analgesic agents, and local anesthetic agents) have been observed in adults. In pediatric patients, administration of fentanyl concomitantly with DIPRIVAN may result in serious bradycardia.

Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenesis

Cong-term studies in animals have not been performed to evaluate the carcinogenic potential of propofol.

Propofol was not mutagenic in the in vitro bacterial reverse mutation assay (Ames test) using Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538. Propofol was not mutagenic in either the gene mutation/gene conversion test using Saccharomyces cerevisiae, or in vitro cytogenetic studies in Chinese hamsters. In the in vivo mouse micronucleus assay with Chinese hamsters propofol administration did not produce chromosome aberrations.

Impairment of Fertility
Female Wistar rats administered either 0, 10, or 15 mg/kg/day propofol intravenously from 2 weeks before pregnancy to day 7 of gestation did not show impaired fertility (0.65 and 1 times the human induction dose of 2.5 mg/kg based on body surface area). Male fertility in rats was not affected in a dominant lethal study at intravenous doses up to 15 mg/kg/day for 5 days.

Pregnancy Risk Summary

There are no adequate and well-controlled studies in pregnant women. In animal reproduction studies, decreased pup survival concurrent with increased maternal mortality was observed with intravenous administration of propofol to pregnant rats either prior to mating and during early gestation or during late gestation and early lactation at exposures less than the human induction dose of 2.5 mg/kg. large probability and a supposture sees than the finitian induction does of 2.5 mg/kg/day intravenous propofol (equivalent to the human induction dose) from two weeks prior to mating to early in gestation (Gestation Day 7), offspring that were allowed to mate had increased post-implantation losses. The pharmacological activity (anesthesia) of the drug on the mother is probably responsible for the adverse effects seen in the offspring. The mouner is proudely responsible for the adverse effects seen in the offspring. Published studies in pregnant primates demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity during the period of peak brain development increases neuronal apoptosis in the developing brain of the offspring when used for longer than 3 hours. There are no data on pregnancy exposures in primates corresponding to periods prior to the third trimester in humans [See Data].

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Animal Data

Pregnant rats were administered propofol intravenously at 0, 5, 10, and 15 mg/kg/day (0.3, 0.65, and 1 times the human induction dose of 2.5 mg/kg based on body surface area) during organogenesis (Gestational Days 6-15). Propofol did not cause adverse effects to the fetus at exposures up to 1 times the human induction dose despite evidence of maternal toxicity (decreased weight gain in all groups)

Pregnant rabbits were administered propofol intravenously at 0, 5, 10, and 15 mg/kg/day (0.65, 1.3, 2 times the human induction dose of 2.5 mg/kg based on body surface area comparison) during organogenesis (Gestation Days 6-18). Propofol treatment decreased total numbers of corpora lutea in all treatment groups but did not cause fetal malformations at any dose despite maternal toxicity (one maternal death from anesthesia-related respiratory depression in the high dose group)

Pregnant rats were administered propofol intravenously at 0, 10, and 15 mg/kg/day (0.65 and 1 times the human induction dose of 2.5 mg/kg based on body surface area) from late gestation through lactation (Gestation Day 16 to Lactation Day 22). Decreased pup survival was noted at all doses in the presence of maternal toxicity (deaths from anesthesia-induced respiratory depression). This study did not evaluate neurobehavioral function including learning and memory in the pups.

Pregnant rats were administered propofol intravenously at 0, 10, or 15 mg/kg/day (0.3 and 1 times the human induction dose of 2.5 mg/kg based on body surface area) from 2 weeks prior to mating to Gestational Day 7. Pup (F1) survival was decreased on Day 15 and 22 of lactation at maternally toxic doses of 10 and 15 mg/kg/day. When F1 offspring were allowed to mate, postimplantation losses were increased in the 15 mg/kg/day treatment group.

In a published study in primates, administration of an anesthetic dose of ketamine for 24 hours on Gestation Day 122 increased neuronal apoptosis in the developing brain of the fetus. In other published studies, administration of either isoflurane or propofol for 5 hours on Gestation Day 120 resulted in increased neuronal and oligodendrocyte apoptosis in the developing brain of the offspring. With respect to brain development, this time period corresponds to the third trimester of gestation in the human. The clinical significance of these findings is not clear; however, studies in juvenile animals suggest neuroapoptosis correlates with long-term cognitive deficits (see WARNINGS; Pediatric Neurotoxicity, PRECAUTIONS; Pediatric Use, and ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY).

Labor and Delivery
DIPRIVAN is not recommended for obstetrics, including cesarean section deliveries. DIPRIVAN crosses the placenta, and as with other general anesthetic agents, the administration of DIPRIVAN may be associated with neonatal

DIPRIVAN is not recommended for use in nursing mothers because DIPRIVAN has been reported to be excreted in human milk and the effects of oral absorption of small amounts of propofol are not known.

The safety and effectiveness of DIPRIVAN have been established for induction of anesthesia in pediatric patients aged 3 years and older and for the maintenance of anesthesia aged 2 months and older.

DIPRIVAN is not recommended for the induction of anesthesia in patients younger than 3 years of age and for the maintenance of anesthesia in patients younger than 2 months of age as safety and effectiveness have not been

In pediatric patients, administration of fentanyl concomitantly with DIPRIVAN may result in serious bradycardia (see **PRECAUTIONS**, *General*).

DIPRIVAN is not indicated for use in pediatric patients for ICU sedation or for MAC sedation for surgical, nonsurgical or diagnostic procedures as safety and effectiveness have not been established.

There have been anecdotal reports of serious adverse events and death in pediatric patients with upper respiratory tract infections receiving DIPRIVAN for

In one multicenter clinical trial of ICU sedation in critically ill pediatric patients that excluded patients with upper respiratory tract infections, the incidence of mortality observed in patients who received DIPRIVAN (n=222) was 9%, while that for patients who received standard sedative agents (n=105) was 4%. While causality has not been established, DIPRIVAN is not indicated for sedation in pediatric patients until further studies have been performed to document its safety in that population (see CLINICAL PHARMACOLOGY, *Pharmacokinetics*, Pediatric Patients and DOSAGE AND ADMINISTRATION).

In pediatric patients, abrupt discontinuation of DIPRIVAN following prolonged infusion may result in flushing of the hands and feet, agitation, tremulousness and hyperirritability. Increased incidences of bradycardia (5%), agitation (4%), and jitteriness (9%) have also been observed.

Published juvenile animal studies demonstrate that the administration of an sthetic and sedation drugs, such as DIPRIVAN, that either block NMDA $\,$ receptors or potentiate the activity of GABA during the period of rapid brain growth or synaptogenesis, results in widespread neuronal and oligodendrocyte cell loss in the developing brain and alterations in synaptic morphology and neurogenesis.

Based on comparisons across species, the window of vulnerability to these changes is believed to correlate with exposures in the third trimester of gestation through the first several months of life, but may extend out to approximately 3 years of age in humans.

In primates, exposure to 3 hours of ketamine that produced a light surgical plane of anesthesia did not increase neuronal cell loss, however, treatment regimens of 5 hours or longer of isoflurane increased neuronal cell loss. Data from isoflurane-treated rodents and ketamine-treated primates suggest that the neuronal and oligodendrocyte cell losses are associated with prolonged cognitive deficits in learning and memory. The clinical significance of these nonclinical findings is not known, and healthcare providers should balance the benefits of appropriate anesthesia in pregnant women, neonates, and young children who require procedures with the potential risks suggested by the nonclinical data (see WARNINGS, *Pediatric Neurotoxicity, Pregnancy*, Animal Toxicology and/or Pharmacology).

Geriatric Use

The effect of age on induction dose requirements for propofol was assessed in an open-label study involving 211 unpremedicated patients with approximately 30 patients in each decade between the ages of 16 and 80. The average dose to induce anesthesia was calculated for patients up to 54 years of age and for patients 55 years of age or older. The average dose to induce anesthesia in patients up to 54 years of age was 1.99 mg/kg and in patients above 54 it was 1.66 mg/kg. Subsequent clinical studies have demonstrated lower dosing requirements for subjects greater than 60 years of age.

A lower induction dose and a slower maintenance rate of administration of A lower induction dose and a slower maintenance rate or administration of DIPRIVAN should be used in elderly patients. In this group of patients, rapid (single or repeated) bolus administration should not be used in order to minimize undesirable cardiorespiratory depression including hypotension, apnea, airway obstruction, and/or oxygen desaturation. All dosing should be titrated according to patient condition and response (see DOSAGE AND ADMINISTRATION, Elderly, Debilitated or ASA-PS III or IV Patients and CLINICAL PHARMACOLOGY,

ADVERSE REACTIONS:

To report SUSPECTED ADVERSE REACTIONS, contact Fresenius Kabi USA, LLC at 1-800-551-7176 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

General
Adverse event information is derived from controlled clinical trials and worldwide marketing experience. In the description below, rates of the more common events represent US/Canadian clinical study results. Less frequent events are also derived from publications and marketing experience in over 8 million patients; there are insufficient data to support an accurate estimate of their incidence rates. These studies were conducted using a variety of premedicants, varying lengths of surgical/diagnostic procedures, and various other anesthetic/ sedative agents. Most adverse events were mild and transient.

Anesthesia and MAC Sedation in Adults

Anestnesia and MAC Secation in Adults
The following estimates of adverse events for DIPRIVAN include data from clinical trials in general anesthesia/MAC sedation (N=2,889 adult patients). The adverse events listed below as probably causally related are those events in which the actual incidence rate in patients treated with DIPRIVAN was greater than the comparator incidence rate in these trials. Therefore, incidence rates for anesthesia and MAC sedation in adults generally represent estimates of the percentage of clinical trial patients which appeared to have probable causal

The adverse experience profile from reports of 150 patients in the MAC sedation clinical trials is similar to the profile established with DIPRIVAN during anesthesia (see below). During MAC sedation clinical trials, significant respiratory events included cough, upper airway obstruction, apnea, hypoventilation, and

Anesthesia in Pediatric Patients

Anesthesia in reliability and the adverse experience profile from reports of 506 DIPRIVAN pediatric patients from 6 days through 16 years of age in the US/Canadian anesthesia clinical trials is similar to the profile established with DIPRIVAN during anesthesia in adults (see Pediatric percentages [Peds %] below). Although not reported as an adverse event in clinical trials, apnea is frequently observed in pediatric

ICU Sedation in Adults

The following estimates of adverse events include data from clinical trials in ICU sedation (N=159 adult patients). Probably related incidence rates for ICU sedation were determined by individual case report form review. Probable causality was based upon an apparent dose response relationship and/or positive responses to rechallenge. In many instances the presence of concomitant disease and concomitant therapy made the causal relationship unknown. Therefore, incidence rates for ICU sedation generally represent estimates of the percentage of clinical trial patients which appeared to have a probable causal relationship.

Incidence greater than 1% - Probably Causally Related

	Anesthesia/MAC Sedation	ICU Sedation
Cardiovascular:	Bradycardia	Bradycardia
	Arrhythmia [Peds: 1.2%] Tachycardia Nodal [Peds: 1.6%]	
	Hypotension* [Peds: 17%] (see also CLINICAL PHARMACOLOGY)	Decreased Cardiac Output
	Hypertension [Peds: 8%]	Hypotension 26%
Central Nervous System:	Movement* [Peds: 17%]	
Injection Site:	Burning/Stinging or Pain, 17.6% [Peds: 10%]	
Metabolic/ Nutritional:		Hyperlipemia*
Respiratory:	Apnea (see also CLINICAL PHARMACOLOGY)	Respiratory Acidosis During Weaning*
Skin and Appendages:	Rash [Peds: 5%] Pruritus [Peds: 2%]	

Events without an * or % had an incidence of 1% to 3% *Incidence of events 3% to 10% $\,$

Incidence less than 1% - Probably Causally Related

	Anesthesia/MAC Sedation	ICU Sedation	
Body as a Whole:	Anaphylaxis/Anaphylactoid Reaction Perinatal Disorder Tachycardia Bigeminy Bradycardia Premature Ventricular Contractions Hemorrhage ECG Abnormal Arrhythmia Atrial Fever Extremities Pain Anticholinergic Syndrome		
Cardiovascular:	Premature Atrial Contractions Syncope		
Central Nervous System:	Hypertonia/Dystonia, Paresthesia	Agitation	
Digestive:	Hypersalivation Nausea		
Hemic/Lymphatic:	Leukocytosis		
Injection Site:	Phlebitis Pruritus		
Metabolic:	Hypomagnesemia		
Musculoskeletal:	Myalgia		
Nervous:	Dizziness Agitation Chills Somnolence Delirium		
Respiratory:	Wheezing Cough Laryngospasm Hypoxia	Decreased Lung Function	
Skin and Appendages:	Flushing, Pruritus		
Special Senses:	Amblyopia Vision Abnormal		
Urogenital:	Cloudy Urine	Green Urine	

Incidence less than 1% - Causal Relationship Unknown

	Anesthesia/MAC Sedation	ICU Sedation
Body as a Whole:	Asthenia, Awareness, Chest Pain, Extremities Pain, Fever, Increased Drug Effect, Neck Rigidity/ Stiffness, Trunk Pain	Fever, Sepsis, Trunk Pain, Whole Body Weakness
Cardiovascular:	Arrhythmia, Atrial Fibrillation, Atrioventricular Heart Block, Bigeminy, Bleeding, Bundle Branch Block, Cardiac Arrest, ECG Abnormal, Edema, Extrasystole, Heart Block, Hypertension, Myocardial Infarction, Myocardial Ischemia, Premature Ventricular Contractions, ST Segment Depression, Supraventricular Tachycardia, Tachycardia, Ventricular Fibrillation	Arrhythmia, Atrial Fibrillation, Bigeminy, Cardiac Arrest, Extrasystole, Right Heart Failure, Ventricular Tachycardia
Central Nervous System:	Abnormal Dreams, Agitation, Amorous Behavior, Anxiety, Bucking/Jerking/Thrashing, Chills/Shivering/Clonic/Myoclonic Movement, Combativeness, Confusion, Delirium, Depression, Dizziness, Emotional Lability, Euphoria, Fatigue, Hallucinations, Headache, Hypotonia, Hysteria, Insomnia, Moaning, Neuropathy, Opisthotonos, Rigidity, Seizures, Somnolence, Tremor, Twitching	Chills/Shivering, Intracranial Hypertension, Seizures, Somnolence, Thinking Abnormal
Digestive:	Cramping, Diarrhea, Dry Mouth, Enlarged Parotid, Nausea, Swallowing, Vomiting	lleus, Liver Function Abnormal
Hematologic/ Lymphatic:	Coagulation Disorder, Leukocytosis	
Injection Site:	Hives/Itching, Phlebitis, Redness/Discoloration	
Metabolic/ Nutritional:	Hyperkalemia, Hyperlipemia	BUN Increased, Creatinine Increased, Dehydration, Hyperglycemia, Metabolic Acidosis, Osmolality Increased
Respiratory:	Bronchospasm, Burning in Throat, Cough, Dyspnea, Hiccough, Hyperventilation, Hypoventilation, Hypoxia, Laryngospasm, Pharyngitis, Sneezing, Tachypnea, Upper Airway Obstruction	Нурохіа
Skin and Appendages:	Conjunctival Hyperemia, Diaphoresis, Urticaria	Rash
Special Senses:	Diplopia, Ear Pain, Eye Pain, Nystagmus, Taste Perversion, Tinnitus	
Urogenital:	Oliguria, Urine Retention	Kidney Failure

DRUG ABUSE AND DEPENDENCE:

There are reports of the abuse of propofol for recreational and other improper purposes, which have resulted in fatalities and other injuries. Instances of self-administration of DIPRIVAN by health care professionals have also been reported, which have resulted in fatalities and other injuries. Inventories of DIPRIVAN should be stored and managed to prevent the risk of diversion. including restriction of access and accounting procedures as appropriate to the clinical setting.

OVERDOSAGE:

OVENDOSAGE:
If overdosage occurs, DIPRIVAN administration should be discontinued immediately. Overdosage is likely to cause cardiorespiratory depression. Respiratory depression should be treated by artificial ventilation with oxygen. Cardiovascular depression may require repositioning of the patient by raising the patient's legs, increasing the flow rate of intravenous fluids, and administering pressor agents and/or artichelipracing energic genetic. pressor agents and/or anticholinergic agents

DOSAGE AND ADMINISTRATION:

Propofol blood concentrations at steady-state are generally proportional to infusion rates, especially in individual patients. Undesirable effects such as cardiorespiratory depression are likely to occur at higher blood concentrations which result from bolus dosing or rapid increases in the infusion rate. An adequate interval (3 minutes to 5 minutes) must be allowed between dose adjustments to allow for and assess the clinical effects.

Shake well before use. Do not use if there is evidence of excessive creaming or aggregation, if large droplets are visible, or if there are other forms of phase separation indicating that the stability of the product has been compromised. Slight creaming, which should disappear after shaking, may be visible upon prolonged standing.

When administering DIPRIVAN by infusion, syringe or volumetric pumps are recommended to provide controlled infusion rates. When infusing DIPRIVAN to patients undergoing magnetic resonance imaging, metered control devices may be utilized if mechanical pumps are impractical.

Changes in vital signs indicating a stress response to surgical stimulation or the emergence from anesthesia may be controlled by the administration of 25 mg (2.5 mL) to 50 mg (5 mL) incremental boluses and/or by increasing the infusion rate of DIPRIVAN

For minor surgical procedures (e.g., body surface) nitrous oxide (60% to 70%) can be combined with a variable rate DIPRIVAN infusion to provide satisfactory anesthesia. With more stimulating surgical procedures (e.g., intra-abdominal), or if supplementation with nitrous oxide is not provided, administration rate(s) of DIPRIVAN and/or opioids should be increased in order to provide adequate anesthesia.

Infusion rates should always be titrated downward in the absence of clinical signs of light anesthesia until a mild response to surgical stimulation is obtained in order to avoid administration of DIPRIVAN at rates higher than are clinically necessary. Generally, rates of 50 mcg/kg/min to 100 mcg/kg/min in adults should be achieved during maintenance in order to optimize recovery times

Other drugs that cause CNS depression (e.g., sedatives, anesthetics, and opioids) can increase CNS depression induced by propofol. Morphine premedication (0.15 mg/kg) with nitrous oxide 67% in oxygen has been shown to decrease the necessary propofol injection maintenance infusion rate and therapeutic blood concentrations when compared to non-narcotic (lorazepam)

Induction of General Anesthesia Adult Patients

Most adult patients under 55 years of age and classified as ASA-PS I or II require 2 mg/kg to 2.5 mg/kg of DIPRIVAN for induction when unpremedicated or when premedicated with oral benzodiazepines or intramuscular opioids. For induction, DIPRIVAN should be titrated (approximately 40 mg every 10 seconds) against the response of the patient until the clinical signs show the onset of anesthesia. As with other general anesthetics, the amount of intravenous opioid and/or benzodiazepine premedication will influence the response of the patient to an induction dose of DIPRIVAN.

Elderly, Debilitated, or ASA-PS III or IV Patients

It is important to be familiar and experienced with the intravenous use of DIPRIVAN before treating elderly, debilitated, or ASA-PS III or IV patients. Due to the reduced clearance and higher blood concentrations, most of these patients require approximately 1 mg/kg to 1.5 mg/kg (approximately 20 mg every 10 seconds) of DIPRIVAN for induction of anesthesia according to their condition and responses. A rapid bolus should not be used, as this will increase the likelihood of undesirable cardiorespiratory depression including hypotension, apnea, airway obstruction, and/or oxygen desaturation (see **DOSAGE AND** ADMINISTRATION).

Pediatric Patients

Most patients aged 3 years through 16 years and classified ASA-PS I or II require 2.5 mg/kg to 3.5 mg/kg of DIPRIVAN for induction when unpremedicated or 2.5 mg/kg to 3.5 mg/kg or DIPHIVAN for induction when unpremedicated or when lightly premedicated with oral benzodiazepines or intramuscular opioids. Within this dosage range, younger pediatric patients may require higher induction doses than older pediatric patients. As with other general anesthetics, the amount of intravenous opioid and/or benzodiazepine premedication will influence the response of the patient to an induction dose of DIPRIVAN. A lower dosage is recommended for pediatric patients classified as ASA-PS III or IV. Attention should be paid to minimize pain on injection when administering DIPRIVAN to pediatric patients. Boluses of DIPRIVAN may be administered via small veins if pretreated with lidocaine or via antecubital or larger veins (see PRECAUTIONS,

Neurosurgical Patients

Neurosurgical Patients
Slower induction is recommended using boluses of 20 mg every 10 seconds.
Slower boluses or infusions of DIPRIVAN for induction of anesthesia, titrated to clinical responses, will generally result in reduced induction dosage requirements (1 mg/kg to 2 mg/kg) (see PRECAUTIONS and DOSAGE AND ADMINISTRATION

Cardiac Anesthesia

DIPRIVAN has been well-studied in patients with coronary artery disease, but experience in patients with hemodynamically significant valvular or congenital heart disease is limited. As with other general anesthetics and sedation drugs, DIPRIVAN in healthy patients causes a decrease in blood pressure that is secondary to decreases in preload (ventricular filling volume at the end of the diastole) and afterload (arterial resistance at the beginning of the systole). The magnitude of these changes is proportional to the blood and effect site concentrations achieved. These concentrations depend upon the dose and speed of the induction and maintenance infusion rates.

In addition, lower heart rates are observed during maintenance with DIPRIVAN, possibly due to reduction of the sympathetic activity and/or resetting of the baroreceptor reflexes. Therefore, anticholinergic agents should be administered when increases in vagal tone are anticipated.

As with other anesthetic agents, DIPRIVAN reduces myocardial oxygen consumption. Further studies are needed to confirm and delineate the extent of these effects on the myocardium and the coronary vascular system

Morphine premedication (0.15 mg/kg) with nitrous oxide 67% in oxygen has been shown to decrease the necessary DIPRIVAN maintenance infusion rates and therapeutic blood concentrations when compared to non-narcotic (lorazepam) premedication. The rate of DIPRIVAN administration should be determined based on the patient's premedication and adjusted according to clinical responses

A rapid bolus induction should be avoided. A slow rate of approximately 20 mg every 10 seconds until induction onset (0.5 mg/kg) to 1.5 mg/kg) should be used. In order to assure adequate anesthesia, when DIPRIVAN is used as the primary agent, maintenance infusion rates should not be less than 100 mcg/kg/min and should be supplemented with analgesic levels of continuous opioid administration. When an opioid is used as the primary agent, DIPRIVAN maintenance rates should not be less than 50 mcg/kg/min, and care should be taken to ensure amnesia. Higher doses of DIPRIVAN will reduce the opioid requirements (see Table 4). When DIPRIVAN is used as the primary anesthetic, it should not be administered with the high-dose opioid technique as this may increase the likelihood of hypotension (see PRECAUTIONS, Cardiac

Table 4. Cardiac Anesthesia Techniques

Primary Agent	Rate	Secondary Agent/Rate (Following Induction with Primary Agent)
DIPRIVAN		OPIOID ^a /0.05 mcg/kg/min to 0.075 mcg/kg/min (no bolus)
Preinduction Anxiolysis	25 mcg/kg/min	
Induction	0.5 mg/kg to 1.5 mg/kg over 60 sec	
Maintenance (Titrated to Clinical Response)	100 mcg/kg/min to 150 mcg/kg/min	
OPIOID ^b		DIPRIVAN /50 mcg/kg/min to 100 mcg/kg/min (no bolus)
Induction	25 mcg/kg to 50 mcg/kg	
Maintenance	0.2 mcg/kg/min to 0.3 mcg/kg/min	

OPIOID is defined in terms of fentanyl equivalents, i.e.,

- 1 mcg of fentanyl = 5 mcg of alfentanil (for bolus) = 10 mcg of alfentanil (for maintenance)

 - = 0.1 mcg of sufentanil

bCare should be taken to ensure amnesia

Maintenance of General Anesthesia

DIPRIVAN has been used with a variety of agents commonly used in anesthesia such as atropine, scopolamine, glycopyrrolate, diazepam, depolarizing and nondepolarizing muscle relaxants, and opioid analgesics, as well as with inhalational and regional anesthetic agents

In the elderly, debilitated, or ASA-PS III or IV patients, rapid bolus doses should not be used, as this will increase cardiorespiratory effects including hypotension, apnea, airway obstruction, and oxygen desaturation.

In adults, anesthesia can be maintained by administering DIPRIVAN by infusion or intermittent IV bolus injection. The patient's clinical response will determine the infusion rate or the amount and frequency of incremental injections.

Continuous Infusion
DIPRIVAN 100 mcg/kg/min to 200 mcg/kg/min administered in a variable rate infusion with 60% to 70% nitrous oxide and oxygen provides anesthesia for patients undergoing general surgery. Maintenance by infusion of DIPRIVAN should immediately follow the induction dose in order to provide satisfactory or continuous anesthesia during the induction phase. During this initial period following the induction dose, higher rates of infusion are generally required (150 mcg/kg/min to 200 mcg/kg/min) for the first 10 minutes to 15 minutes. Infusion rates should subsequently be decreased 30% to 50% during the first platforus of maintenance. Generally rates of 50 mcg/kg/min to 100 mcg/kg/min platforus of maintenance. half-hour of maintenance. Generally, rates of 50 mcg/kg/min to 100 mcg/kg/min in adults should be achieved during maintenance in order to optimize recovery

Other drugs that cause CNS depression (e.g., sedatives, anesthetics, and opioids) can increase the CNS depression induced by propofol.

Intermittent Bolus

Intermittent Boils
Increments of DIPRIVAN 25 mg (2.5 mL) to 50 mg (5 mL) may be administered with nitrous oxide in adult patients undergoing general surgery. The incremental boluses should be administered when changes in vital signs indicate a response to surgical stimulation or light anesthesia.

Pediatric Patients

DIPRIVAN administered as a variable rate infusion supplemented with nitrous oxide 60% to 70% provides satisfactory anesthesia for most children 2 months of age or older, ASA-PS I or II, undergoing general anesthesia.

In general, for the pediatric population, maintenance by infusion of DIPRIVAN at a rate of 200 mcg/kg/min to 300 mcg/kg/min should immediately follow the induction dose. Following the first half-hour of maintenance, infusion rates of 125 mcg/kg/min to 150 mcg/kg/min are typically needed. DIPRIVAN should be titrated to achieve the desired clinical effect. Younger pediatric patients may require higher maintenance infusion rates than older pediatric patients. (See Table 2 Clinical Trials.)

Monitored Anesthesia Care (MAC) Sedation

When DIPRIVAN is administered for MAC sedation, rates of administration should be individualized and titrated to clinical response. In most patients, the rates of DIPRIVAN administration will be in the range of 25 mcg/kg/min to

During initiation of MAC sedation, slow infusion or slow injection techniques During initiation of MAC sedation, slow infusion or slow injection techniques are preferable over rapid bolus administration. During maintenance of MAC sedation, a variable rate infusion is preferable over intermittent bolus dose administration. In the elderly, debilitated, or ASA-PS III or IV patients, rapid (single or repeated) bolus dose administration should not be used for MAC sedation (see WARNIMGS). A rapid bolus injection can result in undesirable cardiorespiratory depression including hypotension, apnea, airway obstruction, and oxygen desaturation.

Initiation of MAC Sedation
For initiation of MAC sedation, either an infusion or a slow injection method may For initiation of MAC sedation, either an infusion or a slow injection method may be utilized while closely monitoring cardiorespiratory function. With the infusion method, sedation may be initiated by infusing DIPRIVAN at 100 mcg/kg/min to 150 mcg/kg/min (6 mg/kg/h to 9 mg/kg/h) for a period of 3 minutes to 5 minutes and titrating to the desired clinical effect while closely monitoring respiratory function. With the slow injection method for initiation, patients will require approximately 0.5 mg/kg administered over 3 minutes to 5 minutes and titrated to clinical responses. When DIPRIVAN is administered slowly over 3 minutes to 5 minutes to 5 minutes to 5 minutes will be adequately sedated, and the peak drug effect. can be achieved while minimizing undesirable cardiorespiratory effects occurring at high plasma levels.

In the elderly, debilitated, or ASA-PS III or IV patients, rapid (single or repeated) bolus dose administration should not be used for MAC sedation (see WARNINGS). The rate of administration should be over 3 minutes to 5 minutes and the dosage of DIPRIVAN should be reduced to approximately 80% of the

usual adult dosage in these patients according to their condition, responses, and changes in vital signs (see DOSAGE AND ADMINISTRATION)

Maintenance of MAC Sedation

Maintenance of MAC Sedation.

For maintenance of sedation, a variable rate infusion method is preferable over an intermittent bolus dose method. With the variable rate infusion method, patients will generally require maintenance rates of 25 mcg/kg/min (1.5 mg/kg/h to 4.5 mg/kg/h) during the first 10 minutes to 15 minutes of sedation maintenance. Infusion rates should subsequently be decreased over time to 25 mcg/kg/min to 50 mcg/kg/min and adjusted to clinical responses. In titrating to clinical effect, allow approximately 2 minutes for onset of peak drug effect.

Infusion rates should always be titrated downward in the absence of clinical signs of light sedation until mild responses to stimulation are obtained in order to avoid sedative administration of DIPRIVAN at rates higher than are clinically

If the intermittent bolus dose method is used, increments of DIPRIVAN 10 mg (1 mL) or 20 mg (2 mL) can be administered and titrated to desired clinical effect. With the intermittent bolus method of sedation maintenance, there is increased potential for respiratory depression, transient increases in sedation depth, and prolongation of recovery.

In the elderly, debilitated, or ASA-PS III or IV patients, rapid (single or repeated) bolus dose administration should not be used for MAC sedation (see WARNINGS). The rate of administration and the dosage of DIPRIVAN should be reduced to approximately 80% of the usual adult dosage in these patients according to their condition, responses, and changes in vital signs (see DOSAGE AND ADMINISTRATION).

DIPRIVAN can be administered as the sole agent for maintenance of MAC sedation during surgical/diagnostic procedures. When DIPRIVAN sedation is supplemented with opioid and/or benzodiazepine medications, these agents increase the sedative and respiratory effects of DIPRIVAN and may also result in a slower recovery profile (see **PRECAUTIONS**, *Drug Interactions*).

ICU Sedation

(See WARNINGS and DOSAGE AND ADMINISTRATION, Handling Procedures.)

Abrupt discontinuation of DIPRIVAN prior to weaning or for daily evaluation of sedation levels should be avoided. This may result in rapid awakening with associated anxiety, agitation, and resistance to mechanical ventilation. Infusions of DIPRIVAN should be adjusted to assure a minimal level of sedation is maintained throughout the weaning process and when assessing the level of sedation is a process of the sedation (see PRECAUTIONS).

Adult Patients

For intubated, mechanically ventilated adult patients, Intensive Care Unit (ICU) sedation should be initiated slowly with a continuous infusion in order to titrate to desired clinical effect and minimize hypotension (see DOSAGE AND

Most adult ICU patients recovering from the effects of general anesthesia or deep sedation will require maintenance rates of 5 mcg/kg/min to 50 mcg/kg/min (0.3 mg/kg/h to 3 mg/kg/h) individualized and titrated to clinical response (see DOSAGE AND ADMINISTRATION). With medical ICU patients or patients who have recovered from the effects of general anesthesia or deep sedation, the rate of administration of 50 mcg/kg/min or higher may be required to achieve adequate sedation. These higher rates of administration may increase the likelihood of patients developing hypotension. Administration should not exceed 4 mg/kg/hour unless the benefits outweigh the risks (see WARNINGS).

Dosage and rate of administration should be individualized and titrated to the desired effect, according to clinically relevant factors including the patient's underlying medical problems, preinduction and concomitant medications, age, ASA-PS classification, and level of debilitation of the patient. The elderly, debilitated, and ASA-PS Ill or IV patients may have exaggerated hemodynamic and respiratory responses to rapid bolus doses (see WARNINGS).

DIPRIVAN should be individualized according to the patient's condition DIPHIVAN should be individualized according to the patients condition and response, blood lipid profile, and vital signs (see PRECAUTIONS, Intensive Care Unit Sedation). For intubated, mechanically ventilated adult patients, Intensive Care Unit (ICU) sedation should be initiated slowly with a continuous infusion in order to titrate to desired clinical effect and minimize hypotension. When indicated, initiation of sedation should begin at 5 mcg/kg/min nypotension. When indicated, initiation of secation should begin at 5 mcg/kg/min (0.3 mg/kg/h). The infusion rate should be increased by increments of 5 mcg/kg/min to 10 mcg/kg/min (0.3 mg/kg/h to 0.6 mg/kg/h) until the desired level of sedation is achieved. A minimum period of 5 minutes between adjustments should be allowed for onset of peak drug effect. Most adult patients require maintenance rates of 5 mcg/kg/min to 50 mcg/kg/min (0.3 mg/kg/h to 3 mg/kg/h) or higher. Administration should not exceed 4 mg/kg/hour unless the benefits outweigh the risks (see **WARNINGS**). Dosages of DIPRIVAN the benefits outweigh the risks (see WARNINGS). Dosages of DIPRIVAN should be reduced in patients who have received large dosages of narcotics. The DIPRIVAN dosage requirement may also be reduced by adequate management of pain with analgesic agents. As with other sedative medications, there is interpatient variability in dosage requirements, and these requirements may change with time (see SUMMARY OF DOSAGE GUIDELINES). Evaluation of level of sedation and assessment of CNS function should be carried out daily throughout maintenance to determine the minimum dose of DIPRIVAN required for sedation (see Clinical Trials, Intensive Care Unit (ICU) Sedation). Bolus administration of 10 mer 20 me setul death to use of the sight intensive of the second death. administration of 10 mg or 20 mg should only be used to rapidly increase depth of sedation in patients where hypotension is not likely to occur. Patients with compromised myocardial function, intravascular volume depletion, or abnormally low vascular tone (e.g., sepsis) may be more susceptible to hypotension (see

SUMMARY OF DOSAGE GUIDELINES:

Dosages and rates of administration in the following table should be individualized and titrated to clinical response. Safety and dosing requirements for induction of anesthesia in pediatric patients have only been established for children 3 years of age or older. Safety and dosing requirements for the maintenance of anesthesia have only been established for children 2 months of age and older.

For complete dosage information, see DOSAGE AND ADMINISTRATION.

DOSAGE AND ADMINISTRATION

Induction of General Anesthesia:

Healthy Adults Less Than 55 Years of

40 mg every 10 seconds until induction onset (2 mg/kg to 2.5 mg/kg).

Elderly, Debilitated, or ASA-PS III or IV

20 mg every 10 seconds until induction onset (1 mg/kg to 1.5 mg/kg).

Cardiac Anesthesia: 20 mg every 10 seconds until induction onset (0.5 mg/kg to 1.5 mg/kg).

Neurosurgical Patients:

20 mg every 10 seconds until induction onset (1 mg/kg to 2 mg/kg).

Pediatric Patients - healthy, from 3 years to 16 years of age: 2.5 mg/kg to 3.5 mg/kg administered over 20 seconds to 30 seconds. (see PRECAUTIONS, *Pediatric Use* and CLINICAL PHARMACOLOGY, Pediatrics)

Maintenance of General Anesthesia:

Infusion

Healthy Adults Less Than 55 Years of

Age: 100 mcg/kg/min to 200 mcg/kg/min (6 mg/kg/h to 12 mg/kg/h)

Elderly, Debilitated, ASA-PS III or IV

mcg/kg/h to 100 mcg/kg/min (3 mg/kg/h to 6 mg/kg/h).

Cardiac Anesthesia: Most patients

require:
Primary DIPRIVAN with Secondary
Opioid – 100 mcg/kg/min to 150 mcg/kg/min.

Low-Dose DIPRIVAN with Primary Opioid - 50 mcg/kg/min to 100 mcg/kg/min. (see **DOSAGE AND ADMINISTRATION**,

Neurosurgical Patients: 100 mcg/kg/min to 200 mcg/kg/min (6 mg/kg/h to 12 mg/kg/h).

Pediatric Patients - healthy, from 2 months of age to 16 years of age: 125 mcg/kg/min to 300 mcg/kg/min (7.5 mg/kg/h to 18 mg/kg/h). Following the first half hour of maintenance, if clinical signs of light anesthesia are not present, the infusion rate should be decreased. rate should be decreased. (see PRECAUTIONS, *Pediatric Use* and CLINICAL PHARMACOLOGY, Pediatrics).

Maintenance of General Anesthesia:

Intermittent Bolus

Healthy Adults Less Than 55 Years of

Increments of 20 mg to 50 mg as

Initiation of MAC Sedation

Healthy Adults Less Than 55 Years of

Age: Slow infusion or slow injection techniques Slow infusion or siow injection techniques are recommended to avoid apnea or hypotension. Most patients require an infusion of 100 mcg/kg/min to 150 mcg/kg/min (6 mg/kg/h to 9 mg/kg/h) for 3 minutes to 5 minutes or a slow injection of 0.5 mg/kg over 3 minutes to 5 minutes followed immediately by a maintenance infusion.

Elderly, Debilitated, Neurosurgical, or

ASA-PS III or IV Patients:

Most patients require dosages similar to healthy adults. Rapid boluses are to be avoided (see WARNINGS).

Maintenance of MAC Sedation:

Healthy Adults Less Than 55 Years of

Age:

A variable rate infusion technique is preferable over an intermittent bolus technique. Most patients require an infusion of 25 mcg/kg/min to 75 mcg/kg/min (1.5 mg/kg/h to 4.5 mg/kg/h) or incremental bolus doses of 10 mg or 20 mg.

In Elderly, Debilitated, Neurosurgical, or ASA-PS III or IV Patients: Most patients require 80% of the usual

adult dose. A rapid (single or repeated) bolus dose should not be used (see WARNINGS).

INDICATION

DOSAGE AND ADMINISTRATION

Initiation and Maintenance of ICU Sedation in Intubated, Mechanically Ventilated

Adult Patients - Because of the residual effects of previous anesthetic or sedative agents, in most patients the initial infusion should be 5 mcg/kg/min (0.3 mg/kg/h) for at least 5 minutes. Subsequent increments of 5 mcg/kg/min to 10 mcg/kg/min (0.3 mg/kg/h to 0.6 mg/kg/h) over 5 minutes to 10 minutes may be used until desired clinical effect is achieved. Maintenance rates of 5 mcg/kg/min to 50 mcg/kg/min (0.3 mg/kg/h to 3 mg/kg/h) or higher may be required. Administration should not exceed 4 mg/kg/hour unless the benefits outweigh the risks (see WARNINGS).

Evaluation of clinical effect and assessment of CNS function should be carried out daily throughout maintenance to determine the minimum dose of DIPRIVAN required for sedation.

The tubing and any unused DIPRIVAN drug product should be discarded after 12 hours because DIPRIVAN contains no preservatives and is capable of supporting growth of microorganisms (see WARNINGS and DOSAGE AND ADMINISTRATION).

Administration with Lidocaine

It lidocaine is to be administered to minimize pain on injection of DIPRIVAN, it is recommended that it be administered prior to DIPRIVAN administration or that it be added to DIPRIVAN immediately before administration and in quantities not exceeding 20 mg lidocaine/200 mg DIPRIVAN.

Compatibility and Stability

DIPRIVAN should not be mixed with other therapeutic agents prior to administration.

Dilution Prior to Administration

DIPRIVAN is provided as a ready-to-use formulation. However, should dilution be necessary, it should only be diluted with 5% Dextrose Injection, USP, and it should not be diluted to a concentration less than 2 mg/mL because it is an emulsion. In diluted form it has been shown to be more stable when in contact with glass than with plastic (95% potency after 2 hours of running infusion in plastic).

Administration with Other Fluids
Compatibility of DIPRIVAN with the coadministration of blood/serum/plasma has not been established (see WARNINGS). When administered using a y-type infusion set, DIPRIVAN has been shown to be compatible with the following intravenous fluids.

- 5% Dextrose Injection, USP Lactated Ringers Injection, USP

- Lactated Ringers and 5% Dextrose Injection 5% Dextrose and 0.45% Sodium Chloride Injection, USP 5% Dextrose and 0.2% Sodium Chloride Injection, USP

Handling Procedures

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit.

Clinical experience with the use of in-line filters and DIPRIVAN during anesthesia or ICU/MAC sedation is limited. DIPRIVAN should only be administered through a filter with a pore size of 5 micron or greater unless it has been demonstrated that the filter does not restrict the flow of DIPRIVAN and/or cause the breakdown of the emulsion. Filters should be used with caution and where clinically appropriate. Continuous monitoring is necessary due to the potential for restricted flow and/or breakdown of the emulsion.

Do not use if there is evidence of separation of the phases of the emulsion.

Rare cases of self-administration of DIPRIVAN by health care professionals have been reported, including some fatalities (see **DRUG ABUSE AND DEPENDENCE**).

Strict aseptic technique must always be maintained during handling. DIPRIVAN strict aseptic technique must always be maintained ouring narioung. DIFFITVAIN is a single access parenteral product (single patient infusion vial) which contains 0.005% disodium edetate to inhibit the rate of growth of microorganisms, up to 12 hours, in the event of accidental extrinsic contamination. However, DIPRIIVAN can still support the growth of microorganisms as it is not an antimicrobially preserved product under USP standards. Do not use if contamination is suspected. Discard unused drug product as directed within the required time limits. There have been reports in which failure to use aseptic technique when handling DIPRIVAN was associated with microbial contamination of the product and with fever, infection/sepsis, other life-threatening illness, and/or death

There have been reports, in the literature and other public sources, of the transmission of bloodborne pathogens (such as Hepatitis B, Hepatitis C, and HIV) from unsafe injection practices, and use of propofol vials intended for single use on multiple persons. DIPRIVAN vials are never to be accessed more than once or used on more than one person.

Diprivan, with EDTA inhibits microbial growth for up to 12 hours, as demonstrated by test data for representative USP microorganisms.

Guidelines for Aseptic Technique for General Anesthesia/MAC Sedation

DIPRIVAN must be prepared for use just prior to initiation of each individual anesthetic/sedative procedure. The vial rubber stopper should be disinfected using 70% isopropyl alcohol. DIPRIVAN should be drawn into a sterile syringe immediately after a vial is opened. When withdrawing DIPRIVAN from vials, a sterile vent spike should be used. The syringe should be labeled with appropriate information including the date and time the vial was opened. Administration should commence promptly and be completed within 12 hours after the vial has been opened.

DIPRIVAN must be prepared for single-patient use only. Any unused DIPRIVAN drug product, reservoirs, dedicated administration tubing and/or

solutions containing DIPRIVAN must be discarded at the end of the anesthetic procedure or at 12 hours, whichever occurs sooner. The IV line should be flushed every 12 hours and at the end of the anesthetic procedure to remove residual DIPRIVAN.

Guidelines for Aseptic Technique for ICU Sedation
DIPRIVAN must be prepared for single-patient use only. Strict aseptic techniques
must be followed. The vial rubber stopper should be disinfected using 70% isopropyl alcohol. A sterile vent spike and sterile tubing must be used for administration of DIPRIVAN. As with other lipid emulsions, the number of IV line manipulations should be minimized. Administration should commence promptly and must be completed within 12 hours after the vial has been spiked. The tubing and any unused DIPRIVAN drug product must be discarded after 12 hours.

If DIPRIVAN is transferred to a syringe prior to administration, it should be drawn into a sterile syringe immediately after a vial is opened. When withdrawing DIPRIVAN from a vial, a sterile vent spike should be used. The syringe should bel labeled with appropriate information including the date and time the vial was opened. Administration should commence promptly and be completed within 12 hours after the vial has been opened. DIPRIVAN should be discarded and administration lines charged after 12 hours.

HOW SUPPLIED:

DIPRIVAN (propofol) Injectable Emulsion, USP Vials

Product No.	NDC No.	Strength	
260910	63323-269-10	100 mg per 10 mL (10 mg per mL)	10 mL ready-to-use single-patient infusion vial in packages of ten.
260929	63323-269-29	200 mg per 20 mL (10 mg per mL)	20 mL ready-to-use single-patient infusion vial in packages of ten.
260950	63323-269-50	500 mg per 50 mL (10 mg per mL)	50 mL ready-to-use single-patient infusion vial in packages of twenty.
260965	63323-269-65	1,000 mg per 100 mL (10 mg per mL)	100 mL ready-to-use single-patient infusion vial in packages of ten.

Propofol undergoes oxidative degradation, in the presence of oxygen, and is therefore packaged under nitrogen to eliminate this degradation pat

Store between 4° to 25°C (40° to 77°F). Do not freeze. Shake well before use. All trademarks are the property of Fresenius Kabi USA, LLC.

ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY

ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY
Published studies in animals demonstrate that the use of anesthetic agents
during the period of rapid brain growth or synaptogenesis results in widespread
neuronal and oligodendrocyte cell loss in the developing brain and alterations
in synaptic morphology and neurogenesis. Based on comparisons across
species, the window of vulnerability to these changes is believed to correlate with
exposures in the third trimester through the first several months of life, but may
extend out to approximately 3 years of age in humans.

In primates, exposure to 3 hours of an anesthetic regimen that produced a ilight surgical plane of anesthesia did not increase neuronal cell loss, however, treatment regimens of 5 hours or longer increase neuronal cell loss. Data in rodents and in primates suggest that the neuronal and oligodendrocyte cell losses are associated with subtle but prolonged cognitive deficits in learning and memory. The clinical significance of these nonclinical findings is not known, and healthcare providers should balance the benefits of appropriate anesthesia in neonates and young children who require procedures against the potential risks suggested by the nonlinical data (see WARNINGS, *Pediatric Neurotoxicity*, PRECAUTIONS; *Pregnancy*, *Pediatric Use*).

Manufactured for:

Lake Zurich, IL 60047 Made in Austria www.fresenius-kabi.com/us 451094.1 Revised: November 2017